Final Examination, 9 MAY 1997
SM3110 (Spring 1997)

The following formulas may be useful to you:

a) //Sv-dA:///Ddivvdxdydz, b)%cv-dr://Sva-dA,

0
c) p(a_:_,_vv.v):—Vp—i—'uAv—i—pF, div v = 0.
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Part 1
1. Find the solution to the initial value problem
' =r+y, y=-z+y, (0)=0,y0)=-2

2. Find the solution to the initial-boundary value problem

up = 4ugy, u(0,t) =u(m,t) =0, wu(z,0)=3sinz.

3. (a) Let f be a function of two variables. Describe the geometric relationship between the gradient
and the contours of f.

(b) Let T(z,y) = 22+ y> — 2z be the temperature profile of a two-dimensional body of water, with
x and y the coordinates of a typical fluid particle. Draw the graph of the 1-isotherm, i.e., the
set of all points that have temperature equal to 1.

(c) Let v be a two-dimensional vector field. Define mathematically what it means for v to have a
potential and a stream function. State the necessary conditions (in terms of vector operations)
for v to have a potential and a stream function.

(d) Let v be a two-dimensional vector field with a potential ¢ and a stream function ). Show that
the contours of ¢ and ¥ must be orthogonal to each other.

4. Let v = (day® — y, —x + 62%y2, 62).

(a) Does v have a potential ¢7 If no, explain. If yes, find it.
(b) Compute [, Vv -dr where C is the straight line connecting (0,0,0) with (1, —-1,2).

5. Let v = (z—2y, 3z —y). Show that this vector field has a stream function and proceed to determine it.
Apply this stream function to determine the equation for the path traversed by the particle located
at position (1,—2) at time 0.
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Part 2

(a) Write down a parametrization r(u,v) of S if
i. S is the plane that passes through the points (1,—1,3), (1,1,2) and (0,0,0).
ii. S is a sphere of radius 3 centered at (2,—1,2).

(b) Find a unit normal vector to the surface z = 322 + 4y? at P = (1,2).

. Let v(z,y,2) = (0,0,2z — 1) be the velocity field of a fluid flow. Find the flux of this flow through

the set of points on the surface z = 1 — 22 — y? and located in the upper-half space z > 0.

. Use double or triple integrals to compute the volume of the tetrahedron with vertices, (1,0,0), (0, 1,0),

(1,1,0) and (1,1,3).

(a) Let 9(z,y) = coshmz cos 7y — 2sinh wz sin wy be the stream function of a fluid flow. Find the
velocity at (z,y) = (1,1).

(b) Let v = (

\/xg—i-yz , _\/x§+y2>' Find the vorticity of v at (z,y) = (1, 1).

Let v(z,y,2) = (322, —y2,0) be the velocity field of a fluid whose density and viscosity are equal to
unity. The position of a fluid particle is denoted by (z,y, z).

(a) Find the acceleration of the particle that occupies (1,—1,1).

(b) Verify whether there is a pressure function p such that the pair (v, p) satisfies the Navier-Stokes
equations with the body force F = 0. If these equations are satisfied, what is the associated
pressure p?



